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Abstract
We present a short review of the general principles of constructing tomograms
of quantum states. We derive a general tomographic reconstruction formula
for the quantum density operator of a system with a dynamical Lie group.
In the reconstruction formula, the multiplicity of irreducible representation in
Clebsch–Gordan decomposition is taken into account. Various approaches to
spin tomography are discussed. An integral representation for the tomographic
probability is found and a contraction of the spin tomogram to the photon-
number tomography distribution is considered. The case of SU(3) tomography
is discussed with the examples of quark states (related to the simplest triplet
representations) and octet states.

PACS numbers: 03.65T, 03.65S, 42.50D

1. Introduction

In order to reconstruct quasi-distributions such as the Wigner function, quantum tomography
methods use conventional tomographic probability distributions (tomograms) [1, 2]. Methods
have been proposed for the reconstruction of the density matrix (quasi-distributions) of the
quantum states [3–6] including the states of spin-like systems [7–11]. The idea of quasi-
distribution functions for angular momentum systems was introduced long ago [12, 13]. From
an analysis of different types of tomogram, the idea of reformulation of quantum mechanics has
appeared [14–16]. In this new formulation of quantum mechanics, which is closely connected
with the tomography method, a quantum state is described by a probability distribution,
alternative to the wavefunction or density matrix.
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Tomography of quantum states in some cases can be related to a group representation or
to other algebraic constructions [17, 18]. The tomography scheme proposed in [19, 20] was
related to the symplectic group. The relation of spin tomography and symplectic tomography
to the SU(2) group and to the Heisenberg–Weyl group has been discussed in [21] and [22],
respectively. The tomographic reconstruction scheme related to the SU(1, 1) group has been
studied in [23]. A detailed discussion of the relation of groups to tomography has been
presented in [11, 24, 25]. In connection with signal analysis, a general construction of
tomographic schemes and the relation of tomograms to quasi-distributions and wavelets has
been proposed in [26].

In quantum mechanics, the star-product of functions is a method to map a product of
operators on to a special product of functions. It is useful to formulate quantum evolution
operators in terms of the evolution of functions, and the use of the Wigner function [27]
within the framework of the Moyal equation [28] gives a realization of the star-product
quantization procedure of classical systems. The spin tomograms have been considered within
the framework of star-product quantization in [22]. A general scheme to map the dynamics,
formulated in terms of operators, on to dynamics formulated in terms of functions of c-number
arguments has been suggested by Stratonovich [12]. As shown in [29], the new formulation
of quantum mechanics using the tomographic approach of [14–16] can be embedded into the
standard star-product quantization procedure.

The aim of this paper is to study relations between different tomographic approaches to the
spin-state description and to obtain the tomograms of quark states proposing the tomographic
approach related to the SU(3) group. Firstly, we discuss a tomographic symbol (tomogram) of
an operator for the SU(2) group [22]. The symbol is a function on the sphere. Also, we review
a map of density operators acting in space of irreducible representations of the SU(2) group
on to set of probability distributions for projections of spin considered in different reference
frames. One can point out that the relation of the spin tomogram to spin quasi-distributions
of the P-distribution type [30] was discussed recently in [31]. The complete tomographic
probability distribution contains redundant information on the spin density matrix. The non-
redundant tomography scheme, which uses a finite number of data, has been presented by
Weigert [32]. One can point out that the redundant information on the density operator can be
useful in a real experimental situation. This information provides the possibility of controlling
the consistency of experimental data.

On the other hand, the scheme of [10] provides the possibility of using a positive function
on the sphere to reconstruct the spin density matrix as well. Here we show that this positive
function is connected with the spin tomogram [7, 8]. It turns out that the positive function
[10] equals one of the values of spin projection probabilities which determines all the other
values. This means that the spin tomogram is similar to a distribution which contains only one
parameter and the single probability value determines all the other values of the probabilities
in the distribution function. There are many such one-parameter distributions, such as the
thermal (Planck’s) distribution, Poisson distribution and squeezed-vacuum distribution.

It is worth noting that, although a general structure of state-reconstruction methods for
quantum systems possessing a group symmetry has been extensively discussed [11, 24, 25], the
most attention has been paid to the Heisenberg–Weyl, symplectic and SU(2) groups. On the
other hand, there are physical states related to other groups, for example, to the SU(3), SU(4)
and SU(6) groups, etc. The dynamical groups describe the spectra of quantum systems [33].
The tomographic description of the rotational state of a top is given in [34].

In nuclear physics, the standard problem is measuring the spin density matrix of a nucleus
using different types of experiment, such as, for example, γ –γ correlations in cascade
transitions or angular distributions of γ -quantum in the (p, p′γ ) process (with respect to
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the scattered proton) [35]. In [32] the reconstruction of the spin density matrix is suggested
by using a finite number of measurements corresponding to several orientations of the system.
In this case, it should be noted that in reactions of a (p, p′γ ) type the spin density matrix
can be measured at different scattering angles of p′-proton, i.e. at different orientations of
the reference frame axes because the z-axis is oriented along the transferred momentum.
Thus, the used procedure is analogous to the discussed spin tomography procedure where the
diagonal matrix elements of the density matrix in the rotated reference frame are necessary to
reconstruct the complete density matrix. Both procedures, in which arbitrary angles [7, 10] or
discrete angles [32] can be realized, are such types of nuclear experiment.

One of the aims of this paper is to extend a scheme of tomographic reconstruction of
the Hermitian density matrix for the quantum states which are associated with irreducible
representations of higher unitary groups (we focus on the case of simple compact groups).
These representations are closely related to states of nuclei and elementary particles. Until
now, the tomographic methods of measuring the quantum states have been developed in
quantum optics only (see, for example, [36, 37]). Our aim is to point out that these methods
can be applied also in nuclear and particle physics.

The paper is organized as follows. In section 2 we give a short review of the general
principles of tomography schemes [38, 39]. In section 3 we derive a general tomographic
reconstruction formula of the density matrix of a state related to a compact Lie group.
We show that the reconstruction formula given in [11] should be corrected in the cases
where multiplicities of the representations in decomposition of the tensor product of two
representations are larger than unity (which is the most usual case for the SU(3) group, for
example). In section 4 we discuss in detail SU(2) tomography. Due to a particular simplicity
of this group, various reconstruction methods are possible.

We compare two different approaches (proposed in [7, 8], [10]) to spin tomography. Also,
we find an integral representation for the tomographic probability and, in view of this, we
analyse the contraction from spin to field systems (see [40, 41] for the contraction of SU(2)
quasi-distribution functions to the Heisenberg–Weyl case).

Extending the approach for higher groups, we consider in section 5 the case of SU(3)
tomography. This means that we describe the elementary particle states using probability
distributions instead of vectors in Hilbert spaces. The superposition principle of quantum
states was formulated in terms of tomographic probabilities (also in terms of density operators)
in [42, 43]. Firstly, we discuss an example of quark states related to the simplest triplet
representations. Then, we study a more complicated situation of octet states.

2. General approach to quantum tomography

In this section, we give a short review of the general principles used to construct a tomography
scheme for measuring quantum states [38].

Let us consider a quantum state described by the density operator ρ̂, which is a non-
negative Hermitian operator, i.e.

ρ̂† = ρ̂ Tr ρ̂ = 1 (1)

and

〈v|ρ̂|v〉 = ρv,v � 0. (2)

We label the vector basis |v〉 in the space of pure quantum states by the multi-dimensional
index v = (v1, v2, . . . , vN), where the number N shows the number of degrees of freedom
of the system under consideration. Among indices vk, k = 1, . . . , N , there are continuous
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indices, such as position (or momentum), and discrete indices, such as spin projections. In
this sense, the wavefunction ψ(v) = 〈v|ψ〉 of a pure state |ψ〉 depends both on continuous
and discrete observables. Using the Hermitian projection operator

�̂v = |v〉〈v| (3)

formula (2) can be rewritten in the following form:

ρv,v = Tr{�̂vρ̂}. (4)

The physical meaning of the projector �̂v is that it extracts the state |v〉 with given v (for
example, with given position and spin projection), which is an eigenstate of the commuting
Hermitian operators V̂ = (V̂1, V̂2, . . . , V̂N)

V̂k|v〉 = vk|v〉. (5)

Let us consider the case where in the space of states there exists a family of unitary operators
Û(σ ) depending on the parameters σ = (σ1, . . . , σM), that can be sometimes identified with
group-representation operators. In these cases, the parameters σ describe the group element.
Let us introduce a ‘transformed density operator’

ρ̂σ = Û(σ )ρ̂Û
−1
(σ ). (6)

Its diagonal elements are still non-negative probabilities (called tomograms)

〈z|ρ̂σ |z〉 = 〈〈z|ρ̂|z〉〉 ≡ w(z, σ ) (7)

where |z〉 is one of the possible vectors |v〉, while the symbol |z〉〉 denotes the transformed
(auxiliary) vectors

|z〉〉 = Û
−1
(σ )|z〉 (8)

which in turn are eigenstates of the transformed operators

Ẑ = Û
−1
(σ )V̂ Û(σ ). (9)

For a normalized density operator, we have the normalization condition for the tomogram∫
dzw(z, σ ) = 1. (10)

In the case of discrete indices, the integral in equation (10) is replaced by a sum over discrete
variables.

Formula (7) can be interpreted as the probability density for the measurement of the
observable V̂ in an ensemble of transformed reference frames labelled by the index σ , if the
state ρ̂ is given. Along with this interpretation, one can also consider the transformed projector

�̂z(σ ) = Û
−1
(σ )�̂zÛ(σ ) = |z〉〉〈〈z| Tr �̂z(σ ) = 1. (11)

The explicit expression for the probability w(z, σ ) takes the form

w(z, σ ) = Tr{ρ̂�̂z(σ )} = Tr{ρ̂|z〉〉〈〈z|}. (12)

In fact, tomograms are tomographic symbols of density operators [29] and the transformed
projectors determine a set of operators defining the symbols. The tomography schemes are
based on the possibility of finding the inverse of equation (12). If it is possible to solve
equation (12) by considering the probability w(z, σ ) as a known function and the density
matrix as an unknown operator, the quantum state can be described by the positive probability
instead of the density matrix. In such cases, the inverse of equation (12) takes the form

ρ̂ =
∫

dz dσw(z, σ )K̂(z, σ ). (13)
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Thus, there exists a family of operators K̂(z, σ ) depending on both the variables z and the
parameters σ such that the density operator is reconstructed, if the probability w(z, σ ) is
known. The operators K̂(z, σ ) in equation (13) together with the transformed projectors
(11) determine the kernel of the star-product of tomographic symbols used in the star-product
quantization procedure [29]. It is worth remarking that transformations Û(σ ) can form other
algebraic constructions, which can have no group structure [17, 18]. The only condition for
the existence of a tomography scheme is the possibility of inverting equation (12). Where the
states |z〉 form a basis of an irreducible representation of some Lie group and Û(σ ) are groups
transformation operators, one can make some further construction. In this case, the density
operator can be expanded in the basis of irreducible tensors using the Clebsch–Gordan series.
Then, the inversion procedure can be carried out by using properties of the Clebsch–Gordan
coefficients. Here, we apply this approach to the SU(2) and SU(3) groups.

3. Systems with dynamical group structure

In the cases of optical tomography [2], symplectic tomography [18, 20], and spin tomography
[7, 8, 16], the sets of transformations Û (σ ) have the structure of corresponding Lie groups (i.e.
rotation group O(2), symplectic group Sp(2, R), and the SU(2) group). For systems with
group structure, kernel operators K̂(z, σ ) in the inverse formula (13) can be found explicitly
in terms of group variables.

Let us consider a quantum system related to a group G. We focus on the case where G is
a simple compact group. We denote as

|A, [m], t〉 (14)

the orthonormal set of the basis state vectors of a unitary finite-dimensional irreducible
representation DA of the group G. Here, A is a signature of the representation which can
be labelled also by eigenvalues of Casimir operators. The complex label [m] specifies the
weight of the basis vector and the label t denotes all the other quantum numbers. In particular,
for the SU(2) group, the single half-integer index −S � m � S, uniquely defines a state of
the 2S + 1-dimensional representation of the group (the representation is defined with a single
numberA = S which is the spin). For the case of the SU(3) group, [m] contains two quantum
numbers

[m] = [Y,M] (15)

where Y is the hypercharge andM,−T � M � T , is a projection of isospin T, which plays the
role of the quantum number t and distinguishes states with equal weights. The representation
is characterized by two numbers p, q = 0, 1, 2, . . . , i.e.

A = (p, q).

If the ket-vector |A, [m], t〉 transforms according to the representation A of the group G

D(g)|A, [m], t〉 =
∑

[m1],t1

DA
[m1]t1,[m]t (g)|A, [m1], t1〉

the bra-vector 〈A, [m], t| transforms according to the conjugate representation A∗ and has
weight [−m], i.e. the vector 〈A, [m], t| transforms like the vector (−1)y(A[m],t)|A∗, [−m], t∗〉,
where the phase factor (−1)y(A[m],t) is a function of the group representation. For the SU(2)
group,

A∗ = S and y(A[m], t) = S −m
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while for the SU(3) group

A∗ = (q, p) and y(A[m], t) = −2p + q

3
− Y + T −M

and isospin T does not change its value under conjugation.
The system density matrix can be expanded in the basis (14) as follows:

ρ =
∑
[m],t

∑
[m1],t1

ρ[m]t,[m1 ]t1 |A, [m], t〉〈A, [m1], t1|. (16)

The operator |A, [m], t〉〈A, [m1], t1| (projector) transforms according to the direct product of
representationsA⊗A∗, which can be expanded in the direct sum of irreducible representations
according to the symbolic formula

A⊗ A∗ =
∑
B

⊕ kBB (17)

where kB is the (outer) multiplicity of the representation B in the above tensor product. Note
that, in the case of the SU(2) group, kB is always unity, which is not true, for example, for the
SU(3) group. Thus, the density matrix (16) can be represented in the form of expansion in
terms of irreducible tensors T B,s[m1]t1

, which form a basis in the space of operators acting in the
irreducible representation B

ρ =
∑

B,[m1],t1

kB∑
s=1

R
B,s
[m1]t1

T
B,s

[m1]t1
(18)

where the index B runs over all the values appearing in the expansion (17). The operators
T B[m1]t1

transform like elements of the basis |B, [m], t〉
D(g)T B[m1]t1D

†(g) =
∑

[m2],t2

DB
[m2]t2,[m1]t1(g)T

B
[m2]t2

and have the following matrix elements:

〈A[m]t|T B,s[m1]t1
|A[m2]t2〉 = (−1)y(A[m2],t2)〈A[m]t;A∗[−m2]t∗2 |B[m1]t1〉s (19)

where 〈A[m]t;B[m1]t1|C[m2]t2〉s are the Clebsch–Gordan coefficients which couple two
irreducible representations A and B to the representation C. The operators T B,s[m1]t1

satisfy the
following normalization condition,

Tr

[
T
A,s

[m]t

(
T
B,s1

[m1]t1

)†]
= δABδ[m][m1 ]δss1δtt1

and the reduced matrix elements of T B,s[m1]t1
are chosen to be unity.

Thus, we can express coefficients RB,s[m1]t1
in terms of elements of the density matrix

ρ[m]t,[m1 ]t1 as follows:

R
B,s
[m1]t1 = Tr

(
ρ
(
T
B,s1

[m1]t1

)†)
=

∑
[m],t

∑
[m2],t2

(−1)y(A[m2],t2)〈A[m]t;A∗[−m2]t∗2 |B[m1]t1〉sρ[m]t,[m2 ]t2 .

The inverse relation reads

ρ[m]t,[m2 ]t2 =
∑

B,[m1],t1,s

(−1)y(A[m2],t2)〈A[m]t;A∗[−m2]t∗2 |B[m1]t1〉sRB,s[m1]t1
.
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According to the general scheme, the transformed density operator (6) has the form

ρ̂g = D(g)ρ̂D†(g)

=
∑

B,[m1],t1,s

∑
[m2],t2

R
B,s
[m1]t1

DB
[m2]t2,[m1]t1(g)T

B,s
[m2]t2

=
∑

B,[m2],t2,s

R̃
B,s
[m2]t2

T
B,s

[m2]t2

where

R̃
B,s
[m2]t2

=
∑

[m1],t1

R
B,s
[m1]t1

DB
[m2]t2,[m1]t1(g).

The probability of detecting the transformed system in a state |A, [m], t〉 for a fixed group
parameter g is given by equation (12), i.e.

w(g,A[m]t) = 〈A[m]t|ρ̂g|A, [m], t〉
∑
B,s,t2

∑
[m1],t1

R
B,s
[m1]t1

DB
[0]t2 ,[m1]t1(g)

× (−1)y(A[m],t)〈A[m]t;A∗[−m]t∗|B[0]t2〉s (20)

where we have used equation (19). It is clear that the state tomogram w(g,A[m]t) is
normalized according to∫

dgw(g,A[m]t) = VG

dimA

∑
[m],t

w(g,A[m]t) = 1. (21)

In equation (21) the group Haar measure is used. Note that equation (20) can be rewritten in
the form (12)

w(g,A[m]t) = Tr(ρ�̂[m]t (g))

where the transformed projector �̂[m]t (g) (11) is defined as

�̂[m]t (g) =
∑

B,[m1],t1,s

∑
[m2],t2

(
T
B,s

[m1]t1

)†
DB

[0]t2,[m1]t1(g)(−1)y(A[m],t)

×〈A[m]t;A∗[−m]t∗|B[0]t2〉s . (22)

Multiplying both sides of equation (20) by the matrix element
(
DB

[0]t ′2,[m
′
1]t ′1
(g)

)∗
,

integrating over the group and making use of the orthogonality relation for matrix elements of
irreducible representations of the compact group∫

dgDB
[m]t,[m1 ]t1(g)

(
DC

[m′]t ′,[m′
1]t ′1
(g)

)∗
= VG

dimB
δCBδ[m′

1][m1]δ[m′][m]δtt ′δt1t ′1

where dg is an invariant measure on the group and VG = ∫
dg is the group volume, we obtain∑

s

(−1)y(A[m],t)R
B,s
[m1]t1

〈A[m]t;A∗[−m]t∗|B[0]t2〉s

= dimB

VG

∫
dg

(
DB

[0]t2,[m1]t1(g)
)∗
w(g,A[m]t). (23)

In the absence of multiplicity, kB = 1, we obtain from equation (23) coefficients of expansion
of the system density matrix in terms of the irreducible tensor operators (18)

R
B,s
[m1]t1

= (−1)y(A[m],t) dimB

VG〈A[m]t;A∗[−m]t∗|B[0]t2〉s

∫
dg

(
DB

[0]t2,[m1]t1(g)
)∗
w(g,A[m]t). (24)

A similar expression has been previously found in [11] and, in the particular case of the SU(2)
group, in [10]. Nevertheless, in the case where kB � 2, the above expression, in general,
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is not correct and to find coefficients RB,s[m1]t1, s = 1, . . . , kB corresponding to degenerate
representations (which enter more than once in the expansion (17)) we have to solve the
system of linear equations (23) for all possible values of index t2. Representing coefficients
R
B,s
[m1]t1 as a kB dimensional vector �R, we find from equation (23)

�R = C−1 �J (25)

where

( �J)t2 = dimB

VG

∫
dg

(
DB

[0]t2 ,[m1]t1(g)
)∗
w(g,A[m]t)

and the kB × kB-matrix C has the following matrix elements:

(C)t2s = (−1)y(A[m],t)〈A[m]t;A∗[−m]t∗|B[0]t2〉s . (26)

Let us recall that the index t2 in the matrix C enumerates states with the same values of the
composite index [m], i.e. t2 is the index of internal multiplicity. Because the outer multiplicity
kB is less than (or equal to) the inner multiplicity of the state corresponding to the weight
[m = 0], we can always choose such a set of indices t2, that the matrix C will be non-
degenerate. Usually in equations (23) and (24) the highest weight vector of the irreducible
representation A is used as the reference vector |A, [m], t〉. We discuss the problem of outer
multiplicity using the example of the SU(3) group.

4. Two reconstruction formulae for the SU (2) group

In this section, we apply the results of the previous sections to the SU(2) group (spin-S
systems) and obtain different forms of inverse formulae for the density matrix in terms of spin
tomogramsw(z, σ ) (7). In this section, we consider the 2S + 1-dimensional representation of
the SU(2) group. The basis of the representation space is formed by eigenstates |k, S〉 of the
spin-projection operator Sz

Sz|k, S〉 = k|k, S〉 k = −S, . . . , S.
In this case, dimA = 2S + 1 and VG = 8π2.

4.1. First reconstruction formula

The tomogram for the spin-S system is defined as follows,

wk = 〈k, S|D(S)(g)ρD(S)†(g)|k, S〉 (27)

where ρ is the density matrix and

D(S)(g) = D(S)(ψ,−θ,−φ) (28)

(for convenience, the signs of the Euler angles θ and φ are chosen to be negative) is the finite
rotation operator in the Euler parametrization, such that

D
(L)
0M(ψ,−θ,−φ) =

√
4π

2L + 1
YLM(θ, φ).

It should be remembered that the physical meaning of the tomogram is that it is equal to the
probability of obtaining the spin projection k of the total spin S on the axis determined by
the Euler angles θ and ϕ. The transformed projector (11) takes the form (where the signs of
the Euler angles θ and φ are taken according to the parametrization (28))

�̂k(g) = �̂k(θ, φ) =
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

T̂
(S)†
L,M〈Sk;L0|Sk〉YLM(θ, φ) (29)
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where T̂ (S)L,M is the irreducible tensor operator for the SU(2) group

T̂
(S)
L,M =

√
2L + 1

2S + 1

S∑
m,m′=−S

〈Sm;LM|Sm′〉|S,m′〉〈S,m| (30)

and

〈Sm;LM|Sm′〉 = (−1)S−m
√

2S + 1

2L + 1
〈Sm′; S −m|LM〉

is the Clebsch–Gordan coefficient which connects two representations of spin S with the
representation determined by total spin 0 � L � 2S. The quantum number M is the total spin
projection. It is easy to see that the tomographic probability (27)

wk = wk(θ, φ) = Tr(ρ�̂k(θ, φ))

takes the form

wk =
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

Tr
(
T̂
(S)†
L,Mρ

)
〈Sk;L0|Sk〉YLM(θ, φ). (31)

This satisfies the following normalization conditions,

2S + 1

4π

∫
d�wk(θ, φ) = 1

S∑
k=−S

wk(θ, φ) = 1 (32)

where d� = sin θ dθ dφ.
For example, for the density matrix of an arbitrary pure spin-1/2 state (which is determined

by a point on the two-dimensional sphere)

ρ�n =
[

cos2 ϑ e−iϕ cosϑ sinϑ
eiϕ cosϑ sinϑ sin2 ϑ

]
(33)

the tomographic probability (27) takes the form

w1/2(θ, φ) = cos2 θ

2
cos2 ϑ + sin2 θ

2
sin2 ϑ +

1

2
sin θ cos(φ − ϕ) sin 2ϑ

w−1/2(θ, φ) = 1 − w1/2(θ, φ).

The density matrix ρ can be expanded in terms of the irreducible tensors (30) as follows:

ρ =
2S∑
L=0

L∑
M=−L

T̂
(S)

L,M Tr
(
T̂
(S)†
L,Mρ

)
=

2S∑
L=0

L∑
M=−L

T̂
(S)

L,MR
(S)

L,M . (34)

Thus, for the coefficients R(S)L,M , we obtain from equation (24)

R
(S)
L,M =

√
2S + 1

4π
〈Sk;L0|Sk〉−1

∫
d�Y ∗

LM(φ, θ)wk(θ, φ). (35)

From the above equation it follows that the system density matrix can be reconstructed,
in view of the tomographic probability distribution wk(θ, φ) for an arbitrary value of the spin
projection k [11]. In the particular case k = −S, the tomographic probability is the Q-function
for spin systems [10]. It is worth noting that for k = 0 the Clebsch–Gordan coefficient
〈Sk;L0|Sk〉 equals zero when 2S + L is an odd number, and thus the inversion formula (35)
does not work. This means that the reconstruction of the density matrix fromwk is subtle and
not all components in the expansion (34) can be reconstructed at k = 0, but only those for
which 2S + L is an even number.
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4.2. Integral representation

An integral representation for the operator �̂k(θ, φ) can be found in the same way as for the
Stratonovich–Wigner operator [40] by making use of the following expansion for elements of
the irreducible representation of the SU(2) group [44],

e−i�y· �S =
√

4π√
2S + 1

2S∑
L=0

L∑
M=−L

(−i)LχSL(ω)Y
∗
L,M(�n)T̂ (S)L,M (36)

where

�y = ω�n �n = (cosϕ sin θ, sin ϕ sin θ, cos θ) �S = (Sx, Sy, Sz)

are the su(2) algebra operators and χSL(ω) are the generalized characters of the group [44]

χSL(ω) = iL
∑
M

e−iMω〈SM;L0|SM〉 (37)

which obey the following orthogonality relation (following from the above formula and sum
rules for the Clebsch–Gordan coefficients):∫ 2π

0
dωχSL(ω)χ

S
L′(ω) = 2πδL,L′

2S + 1

2L + 1
. (38)

Using the orthogonality relation (38) one can invert the expansion (36) giving the following
integral representation for the operator (29) (similar to that for the Stratonovich–Wigner
operator [40]),

�̂k(φ, θ) =
∫ 2π

0
dω eiω�n· �Sf (ω) (39)

where the weight function f (ω) is defined as follows:

f (ω) = 1

2π

2S∑
L=0

(−i)L
2L + 1

2S + 1
χSL(ω)〈Sk;L0|Sk〉 = 1

2π
e−iωk. (40)

Thus, equation (39) takes a simple form

�̂k(θ, φ) = 1

2π

∫ 2π

0
dω eiω(�n· �S−k) (41)

and the tomographic probability function acquires the form analogous to the probability
distribution introduced in [45] as the Fourier transform of the characteristic function for the
observable �S�n,

wk(θ, φ) = 1

2π

∫ 2π

0
dω Tr(eiω�n· �Sρ) e−iωk. (42)

Using the expansion (36) one can rewrite the reconstruction formulae (34) and (35) in the
integral form dual to (42)

ρ =
∫

d�
∫ 2π

0
dω e−iω�n· �Sg(ω)wk(θ, φ) (43)

where

g(ω) = 1

8π2

2S∑
L=0

iL(2L + 1)χSL(ω)〈Sk;L0|Sk〉−1.
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4.3. Spin tomogram and density operator

The general expression (24) and its particular consequences (34), (35) and (43) represent
reconstruction formulae, where the density matrix is determined using the single tomographic
probability value as a function on the sphere (12). In the case of the SU(2) group, another
reconstruction scheme is possible. Sometime, due to errors while measuring the tomogram
w(z, σ ), more than one value of probability of the observable is desirable for additional
control. In this section, we derive such expressions for the density matrix reconstruction.

Let us note that from equation (31) and the expansion (36) together with the definition of
generalized characters (37) it follows that

S∑
k=−S

wk(θ, φ) eiωk = Tr(eiω�n· �Sρ).

Making use of the expansion

L̂ = 2S + 1

4π2

∫
dV Tr(eiω�n· �SL̂) e−iω�n· �S

where dV = sin2 ω/2 dω d� and L̂ is an arbitrary (2S + 1) × (2S + 1) matrix, we obtain the
following inversion formula (see also [46]):

ρ =2S + 1

4π2

∫
dV e−iω�n· �S

S∑
k=−S

wk(θ, φ) eiωk. (44)

Using the normalization condition (32), one can prove that the condition Trρ = 1 is preserved.
Note that in the above reconstruction formula all the probabilities wk(θ, φ) are involved.
Equation (44) has a clear physical sense and can be interpreted as a double (operational and
finite) Fourier transformation of the tomographic probabilities wk(θ, φ).

One can also find another reconstruction formula for the density matrix. Multiplying
equation (31) by 〈Sk;L0|Sk〉Y ∗

LM(θ, φ), integrating over the solid angle� and summing over
the index k, we obtain

Tr
(
T̂
(S)†
L,Mρ

)
= 2L + 1√

4π(2S + 1)

∫
d�Y ∗

LM(θ, φ)

S∑
k=−S

wk(θ, φ)〈Sk;L0|Sk〉 (45)

where we have used the following sum rules [44]:

S∑
k=−S

〈Sk;L0|Sk〉〈Sk;L10|Sk〉 = 2S + 1

2L + 1
δLL1 .

Equations (34) and (45) immediately give the reconstruction formula

ρ =
2S∑
L=0

L∑
M=−L

T̂
(S)
L,M

2L + 1√
4π(2S + 1)

∫
d�Y ∗

LM(θ, φ)

S∑
k=−S

wk(θ, φ)〈Sk;L0|Sk〉

which has been obtained in [7, 8, 22] in a different way.

4.4. Contraction to photon-number tomogram

Taking into account the decomposition

e−iω�n· �S = D(φ, θ) e−iωSzD†(φ, θ) (46)
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whereD(φ, θ) is the displacement operator

D(φ, θ) = exp

[
θ

2
(S−eiφ − S+ e−iφ)

]
(47)

one can obtain from equation (41) another representation for the operator �̂k(θ, φ),

�̂k(θ, φ) = D(φ, θ)σ̂kD
†(φ, θ) (48)

where

σ̂k = 1

2π

∫ 2π

0
dω e−iω(Sz−k) = δ(Sz − k). (49)

Expression (48) is very suitable for considering the limit S → ∞ and obtaining contraction to
the Heisenberg–Weyl group (see [40, 41]). Let us assume, that the system density matrix has
a sharp maximum in the vicinity of the north pole of the sphere. In the basis of eigenvalues
of Sz, this means that the only density matrix elements, essentially different from zero, are
ρS−k,S−j , with k, j � S. On the other hand, in the displacement operatorD(θ, φ) one should
take the limit θ → 0. Then we may substitute

S+ =
√

2Sa† S− =
√

2Sa Sz = N̂ − S (50)

such that

[N̂, a†] = a† [N̂, a] = −a [a, a†] = 1 − N̂

S

and the displacement operator (47) takes the form

D(φ, θ) = exp

[
θ

√
S

2
(a† eiφ − a e−iφ)

]
.

In the limit where θ → 0 and S → ∞, so that r = θ
√
S/2 remains finite, we obtain

D(φ, θ) → D(α) = exp(αa† − α∗a) α = −r eiφ (51)

which is just the displacement operator for the Heisenberg–Weyl group. To take the limit in
the σ̂ operator (49), we change the index k (which originally indicates a state of the su(2)
spectrum counting from the bottom, k = −S, . . . , S) to n−S,where n = 0, . . . , 2S indicates
the position of the same state but counting from the top of the spectrum (from the north pole
of the sphere). Substituting equation (50) into (49) and taking into account that N̂ → a†a,
we obtain

σ̂k → σ̂ = δ(N̂ − n)

and the operator �̂k(φ, θ) converts into

�̂k(φ, θ) → �̂n(α) = D(α)δ(N̂ − n)D†(α)

where one can easily recognize the operator which generates the photon-number tomogram
[3, 4, 17, 26]. In fact, we obtain

wn(α) = Tr(D(α)δ(N̂ − n)D†(α)ρ) = 〈n|D†(α)ρD(α)|n〉
where |n〉 is the n-photon-number state. This probability distribution function [45] is just the
photon-number tomogram of [3, 4, 17].
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5. Transition probabilities

Using equations (34)–(35) one can find the transition probability (fidelity) between two spin
states characterized by the density matrices ρ1 and ρ2,

W12 = Tr(ρ1ρ2)
(52)

W12 =
∫

d� d�′w(1)k (�)w
(2)
k (�

′)αk,S(�,�′)

where� denotes the solid angle and

αk,S(�,�
′) = 2S + 1

4π

2S∑
L,L′=0

L∑
M,M ′=−L

(〈Sk;L0|Sk〉〈Sk;L′0|Sk〉)−1

× Y ∗
LM(�)YLM(�

′)Tr
(
T̂
(S)
L,MT̂

(S)†
L′,M ′

)
.

Taking into account

Tr
(
T̂
(S)
L,M T̂

(S)†
L′,M ′

)
= δLL′δMM ′

and using the summation rule
L∑

M=−L
Y ∗
LM(�)YLM(�

′) = 2L + 1

4π
PL(cosω)

where

cosω = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′)

and PL(cosω) are the Legendre polynomials, we finally obtain

αk,S(�,�
′) = 2S + 1

(4π)2

2S∑
L=0

〈Sk;L0|Sk〉−2(2L + 1)PL(cosω). (53)

Since the reconstruction formula used here has the same form for arbitrary spin projections k,
the fidelity (52) has the same form for different k as well. In particular, the purity parameter
in terms of the tomographic probabilities takes the form

µ = Tr(ρ2) =
∫

d� d�′wk(�)wk(�′)αk,S(�,�′).

In the case of S = 1/2, we obtain from equation (53)

αk,S(�,�
′) = 2

(4π)2
(1 + 9 cosω) (54)

which is independent of the index k = ±1/2. Substituting explicit expressions for the
tomographic probabilities in terms of the Stokes parameters

2ρ1/2,−1/2 = ξ1 + iξ2 ρ1/2,1/2 − ρ−1/2,−1/2 = ξ3

gives

w±1/2(�) = 1 + ξ3 cos θ

2
± 1

2
Re[(ξ1 + iξ2) eiφ] sin θ

and inserting equation (54) into (52) we obtain, after performing a trivial integration, the
well-known result

W12 = 1
2

(
1 + ξ (1)1 ξ

(2)
1 + ξ (1)2 ξ

(2)
2 + ξ (1)3 ξ

(2)
3

)
.
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6. Tomography for the SU (3) group

In this section, we apply general equations (23) and (24) to the case of the SU(3) group.
All necessary formulae of the theory of the SU(3) group representations are given in
appendices A–D.

6.1. Quark states

There are two (conjugate) fundamental representations of the SU(3) group, (1, 0) and (0, 1),
which correspond to quark and anti-quark states. The dimension of these representations
is dimA = 3. The three basis vectors of the (1, 0) representation (quark states) are of the
form (15)

|1〉 = |(1, 0), [−2/3, 0], 0〉
|2〉 = |(1, 0), [1/3, 1/2], 1/2〉
|3〉 = |(1, 0), [1/3,−1/2], 1/2〉.

The basis of the conjugate representation (01) (anti-quark states) is formed by vectors

|1̄〉 = |(0, 1), [2/3, 0], 0〉
|2̄〉 = |(0, 1), [−1/3,−1/2], 1/2〉
|3̄〉 = |(0, 1), [−1/3, 1/2], 1/2〉.

Their tensor product (17) can be decomposed into the direct sum of two irreducible
representations

(1, 0)⊗ (0, 1) = (1, 1)⊕ (0, 0) (55)

where (1, 1) corresponds to the octet state and (0, 0) is the singlet state. Because the expansion
(55) is not degenerate (both states in this expansion enter with multiplicity kB = 1) we can
apply equation (24) directly in order to obtain coefficients RB[m1]t1

in expansion (18). For a
reference state |A[m]t〉, we obtain

RB[m1]t1 = (3 dimB)1/2

VG〈(10)[m]t;B[0]t2|(10)[m]t〉
∫

dg
(
DB

[0]t2,[m1]t1(g)
)∗
w(g, (10)[m]t)

where

w(g; (10)[m]t) = |〈(10)[m]t|D(g)|(10)[m]t〉|2.
We take into account the following symmetry relation for the Clebsch–Gordan coefficients
(which holds for this non-degenerate case and self-conjugate representation B):

(−1)y(A[m2],t2)〈A[m]t;A∗[−m2]t∗2 |B[m1]t1〉 =
√

dimB

dimA
〈A[m]t;B[−m1]t1|A[m2]t2〉.

The group volume is VG = (1/2)(4π)5. The index B labelling representations takes values
(0, 0) and (1, 1) according to equation (55). Then, taking into account the normalization
condition (21) and values of T (00)

[0,0]0 and D(00)
[0]0,[0]0(g),

T
(00)

[0,0]0 = 1√
3
I D

(00)
[0]0,[0]0(g) = 1

we find that the density matrix has the form

ρ = 1

3
I +

∑
Y,T ,M

R
(11)
YTMT

(11)
YTM.
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The first term in the above equation corresponds to the singlet term and the sum represents a
contribution of the octet term. Let us suppose, for example, that the system is prepared in the
state |1〉. The resulting density matrix is of the form

ρ = 1
3I + Ŷ (56)

i.e. in this case all coefficients R(11)
YTM vanish except for

R
(11)
000 =

√
2
3 .

In order to illustrate how the reconstruction formula (24) does work, we calculate the coefficient
R
(11)
000 using this formula. It is necessary to take into account the following points:

(i) Since the vector |1〉 possesses the following quantum numbers (with respect to
transformations from subgroups of U,V and T spins),

U = 1
2 U3 = 1

2 V = 1
2 V3 = 1

2 T = 0 T3 = 0

we obtain in the notation

|1〉 =
1

0
0

 |2〉 =
0

1
0

 |3〉 =
0

0
1


that

D(g)|1〉 =


cos θU2 cos θV2 ei(φU+φU+ψU)

−i sin θU
2 cos θV2 ei(−φU+φU+ψU)

−i sin θV
2 ei(−φU+ψU)

 (57)

where we have used equations (83)–(87) from appendix D. It follows from the above
equation that the probability of detecting the state |1〉 in the transformed coordinate
system is

w(g; (10)[−2/3, 0]0) = cos2 θU

2
cos2 θV

2

w(g; (10)[1/3, 1/2]1/2)= sin2 θU

2
cos2 θV

2
(58)

w(g; (10)[1/3,−1/2]1/2)= sin2 θV

2
.

(ii) The SU(3)D-function we need is of the form (see appendix D)

D
(11)
000,000(θU , θV ) = − 1

8 + 3
8 cos θU + 3

8 cos θV + 3
8 cos θU cos θV . (59)

(iii) The necessary Clebsch–Gordan coefficient is〈
(10)− 2

3 00, (11)000
∣∣(10)− 2

3 00
〉 = 1

2 . (60)

Substituting expressions (58)–(60) into equation (24) we obtain the result (56) as it
should be.
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6.2. Octet states

The self-conjugate, A = A∗, representation of the SU(3) group (1, 1) is of dimA = 8. The
direct product of two representations (1, 1) contains the representation (1, 1)with multiplicity
kB = 2

(1, 1)⊗ (1, 1) = (0, 0)⊕ (1, 1)⊕ (1, 1)⊕ (3, 0)⊕ (0, 3)⊕ (2, 2). (61)

Thus, to find coefficients RB[m1]t1
corresponding to representations (0, 0), (3, 0), (0, 3), (2, 2),

we can use equation (24). Nevertheless, coefficients RB,s[m1]t1 correspond to a couple of
degenerate representations (1, 1) appearing in equation (61), and we have to make use of
the solution of the system (23) in the form (25). Let us consider, for example, a particular
case when the reference state is the highest weight vector |(1, 1), [−1, 1/2], 1/2〉. The index
s takes values s = 1, 2 while the index of inner multiplicity t2 = 0, 1. One can show that the
matrix elements CT ′′s of the matrix C defined in equation (26), take the form [47–49]

CT ′′s =
 s = 1 s = 2
T ′′ = 0 1/2 1/

√
20

T ′′ = 1 1/
√

12 −√
3/20


such that detC = −1/

√
15. Thus

R
B,1
[m1]t1

= 1

2π2

∫
dg

[(
DB

[0]0,[m1 ]t1(g)
)∗

+
1√
3

(
DB

[0]1,[m1 ]t1(g)
)∗]

w(g, (11)[−1, 1/2]1/2)

R
B,2
[m1]t1 =

√
5

6π2

∫
dg

[(
DB

[0]0,[m1 ]t1(g)
)∗ −

√
3
(
DB

[0]1,[m1 ]t1(g)
)∗]

w(g, (11)[−1, 1/2]1/2)

wherew(g, (11)[−1, 1/2]1/2) is the tomographic probability for a given reference state which
corresponds to isospin T = 1/2.

7. Conclusions

We have developed a scheme of tomographic reconstruction of the Hermitian density matrix for
quantum states which are associated with irreducible representations of unitary groups. Pure
states of quantum systems, which are identified with basis vectors of irreducible representations
of the corresponding group, are mapped on to tomographic probability distributions. We have
applied this approach to two particular examples of the SU(2) and SU(3) groups. For
the SU(2) group, we have presented general different but equivalent expressions for the
reconstruction of the density matrix in terms of the tomographic probability distribution. For
the SU(3) group, the reconstruction expressions have been obtained by taking into account
the multiplicities in the Clebsch–Gordan decomposition of the tensor product of irreducible
representations.

It should be pointed out that it is possible to interpret the suggested approach in two
ways. One possibility is to consider the tomogram as an instrument (inversion formula)
to reconstruct the quantum state identified with the Wigner function. In this case, there
are additional problems. The employment of the inversion formula can create some errors.
Whenever real experimental data are inserted, the result of reconstruction can exhibit artefacts
of various origins. In quantum optics, a statistical approach to solve this problem was discussed
in [50, 51]. Another possibility is to consider the tomogram as the final information on the
quantum state. This means that one identifies the state with the tomogram. Using this method
one can avoid the above problem.
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The obtained expressions provide a possibility to interpret spinors as well as quarks, octets
and other particle states as positive probability distributions, alternative to the association of
these quantum states with vectors in Hilbert space. The transition probabilities between
quantum spin states of the particles are expressed in terms of an integral containing the
product of tomograms of corresponding states.

The approach developed can be generalized to more complicated constructions such as,
for example, quantum groups.
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Appendix A. SU (3) group representations

In this appendix, we briefly describe the irreducible representations of the SU(3) group and
the corresponding matrix elements of finite transformations (D-functions) [47–49].

Generators of the SU(3) group (Aik, i, k = 1, 2, 3) satisfy the following commutation
relations,

[Aik,Apq] = δkpAiq − δiqApk A
†
ik = Aki

and the diagonal generators Aii , which form an Abelian subalgebra [Aii, App] = 0, satisfy
the following condition:

3∑
p=1

App = 0.

Thus, we can choose two independent diagonal generators in the following form:

Hλ = A11 − A22 Hµ = A22 − A33.

Each irreducible representation is labelled by its highest weight� = (λµ), where λ and µ are
non-negative integers. Below we denote the signature of irreducible representation A for a
particular case of the SU(3) group as the highest weight�. The corresponding (highest state)
vector, which we denote as |(λµ),H 〉, satisfies the following conditions:

Aik|(λµ),H 〉 = 0 if i < k

Hλ|(λµ),H 〉 = λ|(λµ),H 〉
Hµ|(λµ),H 〉 = µ|(λµ),H 〉.

The dimension of representation is given by

dim(λµ) = 1
2 (λ + 1)(µ + 1)(λ + µ + 2).

Appendix B. Description of basis

There are three canonical reductions of the SU(3) group to different subgroupsU(1)⊗SU(2).
We consider the basis corresponding to each of these reductions.
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B.1. T-basis

This basis corresponds to the following reduction,

SU(3) → UY (1)⊗ SUT (2)

where

T+ = A23 T− = A32 T0 = 1
2Hµ (62)

are generators of the subgroup SUT (2), usually called the T-spin subgroup. Operators (62)
satisfy standard SU(2) commutation relations

[T0, T±] = ±T± [T+, T−] = 2T0. (63)

The only generator of the UY (1) subgroup is

Ŷ = − 1
3 (2Hλ +Hµ) [Ŷ , T±,0] = 0

usually called the hypercharge operator.
In this case, we denote basis vectors of the irreducible representation� by

|�,YT T3〉 ≡ |�, jT T3〉 (64)

where quantum numbers Y, T , T3 take the following values:

Y = − 1
3 (2λ + µ) + p + q 0 � p � λ 0 � q � µ

(65)
T = 1

2 (µ + p − q) −T � T3 � T j = 1
2 (p + q).

B.2. U-basis

This basis corresponds to the reduction

SU(3) → UZ(1)⊗ SUU(2)

where generators of the SUU(2) subgroup (U-spin subgroup)

U+ = A12 U− = A21 U0 = 1
2Hλ

satisfy the commutation relations similar to (63) and the operator

Z = − 1
3 (Hλ +Hµ) [Z,U±,0] = 0

is the generator of the UZ(1) subgroup. We denote the corresponding basis vectors by

|�,ZUU3〉 ≡ |�,fUU3〉 (66)

where

Z = − 1
3 (λ + 2µ) + k + l 0 � k � λ 0 � l � µ

(67)
U = 1

2 (λ + l − k) − U � U3 � U f = 1
2 (k + l).

B.3. V-basis

This basis corresponds to the reduction

SU(3) → UX(1)⊗ SUV (2)

where generators of the SUV (2) subgroup (V -spin subgroup)

U+ = A13 U− = A31 U0 = 1
2 (Hµ +Hλ)

satisfy the commutation relations similar to (63) and the operator

X = − 1
3 (Hλ −Hµ) [X,V±,0] = 0
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is the generator of the UZ(1) subgroup. We denote the corresponding basis vectors by

|�,XVV3〉 ≡ |�, cV V3〉 (68)

where

X = − 1
3 (λ− µ) + e − g 0 � e � λ 0 � g � µ

(69)
V = 1

2 (µ− e − g) − V � V3 � V c = 1
2 (µ + e − g).

Appendix C. Transitions between T-, U- and V-bases

Each vector of canonical bases (64), (66) and (68) can be expressed in terms of any other basis
vectors. The matrix elements of the corresponding transitions are as follows.

C.1. U–T transition

One has the expression for the scalar product in terms of 3j symbols

〈�,ZUU3|�,YT T3〉 = δff ′δU3U
′
3
(−1)λ+µ

√
(2T + 1)(2U + 1)

{
T j µ/2
U j1 j2

}
(70)

where

j1 = 1
2 (λ + µ)− f ′ j2 = 1

2λ + f ′ − j f ′ = 1
2

(
1
2µ + j − T3

)
f = 1

2 (k + l) j = 1
2 (p + q) U ′

3 = 1
2

(
λ + 1

2µ− 3j − T3
)

and
{
T

U

j

j1

µ/2
j2

}
denotes the 3j symbol.

C.2. V–T transition

One has the expression for the scalar product

〈�,XV V3|�,YT T3〉 = δcc′δV3V
′
3
(−1)λ−µ/2+j−T√(2T + 1)(2V + 1)

{
T j µ/2
V j3 j4

}
(71)

where

j3 = 1
2 (λ + µ)− c′ j4 = 1

2λ + c′ − j c′ = 1
2

(
1
2µ + j + T3

)
c = 1

2 (µ + e − g) V ′
3 = 1

2

(
λ + 1

2µ− 3j + T3
)
.

C.3. U–V transition

One has the matrix element in the form

〈�,ZUU3|�,XVV3〉 = δff ′δU3U
′
3
(−1)f +c+U+V

√
(2U + 1)(2V + 1)

{
U j5 λ/2
V c j6

}
(72)

where

j5 = 1
2

(
1
2λ + µ− c − V3

)
j6 = 1

2λ + µ− c − j5 c′ = 1
2

(
1
2µ + j + T3

)
U ′

3 = 1
2

(
1
2λ + µ− 3c + V3

)
.
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Appendix D. D-functions for the SU (3) group

Let us consider an irreducible representation� of the SU(3) group (g → D(g), g ∈ SU(3))
with highest weight �. As a basis in the representation space H we choose T-basis (64). The
action of D(g) on the states (64) is defined according to

D(g)|�,YT T3〉 =
∑

[m′],T ′
D�

[m′]T ′,[m]T (g)|�, [m′]T ′〉

where [m] is a collective index [m] = (Y, T3) and matrix elements

D�
[m]T ,[m1 ]T1

(g) = 〈�, [m]T |D(g)|�, [m1]T1〉 (73)

define the SU(3)D-function in the T-basis. To find an explicit expression for D�
[m]T ,[m1 ]T1

(g),
we use the following parametrization for the SU(3) group elements [52],

D�(g) = DU(ϕU, θU )D
V (ϕV , θV )D

T (ϕT , θT )N(ψU ,ψT ) (74)

where

DU(ϕU , θU) = eiϕUU0 eiθU (U++U−)/2 (75)

DV (ϕV , θV ) = eiϕV V0 eiθV (V++V−)/2 (76)

DT (ϕT , θT ) = eiϕT T0 eiθV (T++T−)/2 (77)

N(ψU ,ψT ) = eiψUU0 eiψT T0 (78)

are the operators of finite rotations for U-, V - and T-spin subgroups, respectively. The Euler
angles θ, ϕ and ψ vary in the following domains:

0 � θU < π 0 � ϕU < 2π 0 � ψU < 4π

0 � θV < π 0 � ϕV < 2π

0 � θT < π 0 � ϕT < 2π 0 � ψT < 4π.

Making use of equations (74)–(78) one can represent the matrix element (73) in the form

DT
Y ′T ′

3T
′,YT3T

(g) =
∑
Z,U3,U

∑
X,V3,V

DU
Y ′T ′

3T
′,ZU3U

(ϕU , θU)D
V
ZU3U,XV3V

(ϕV , θV )

×DT
XV3V,YT3T

(ϕT , θT )NYT3T (ψU ,ψT ). (79)

Diagonal matrix elements NYT3T (ψU ,ψT ) have a simple form

NYT3T (ψU ,ψT ) = ei(U ′′
3ψU+T3ψT )

where

U ′′
3 = 1

2

(
µ− 3

2Y − T3
)
.

The remaining matrix elements appearing in equation (79) can be expressed in terms of the
usual matrix elements of the irreducible representations of the SU(2) group. In fact, using
connections between different bases (70)–(72), we find

DU
Y ′T ′

3T
′,ZU3U

(ϕU , θU) = δff ′(−1)λ+µ
√
(2T ′ + 1)(2U + 1)

{
T ′ j ′ µ/2
U j1 j2

}
eiU ′

3ϕU dU
U ′

3U3
(θU)

(80)

DV
ZU3U,XV3V

(ϕV , θV ) = δcj3(−1)c+f+V +U
√
(2V + 1)(2U + 1)

{
U f λ/2
V j3 j4

}
eiV ′

3ϕV dV
V ′

3V3
(θV )

(81)
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DT
XV3V,YT3T

(ϕT , θT ) = δjj5(−1)λ+µ/2+j−T√(2V + 1)(2T + 1)

{
T j5 µ/2
V j6 j7

}
eiT ′′

3 ϕT dTT ′′
3 T3
(θT )

(82)

where

j1 = 1
2 (λ + µ)− f ′ j2 = 1

2λ + f ′ − j ′

f ′ = 1
2

(
1
2µ + j ′ − T ′

3

)
U ′

3 = λ + 1
2µ− 3j ′ − T ′

3

j3 = 1
2

(
1
2λ + µ− f − U3

)
j4 = 1

2λ + µ− f − j3

V ′
3 = 1

2

(
1
2λ + µ− 3f + U3

)
j5 = 1

2

(
1
2λ + c − V3

)
j6 = 1

2 (λ + µ)− c

j7 = 1
2λ + c − j5 T ′′

3 = − 1
2

(
µ + 1

2λ− 3c− V3
)
.

Relations between parameters (Z,X,�) and (f, c, j) are given by equations (65), (69)
and (67).

For example, for the irreducible representation � = (1, 0) we obtain from
equations (80)–(82)

D(1,0)(g) = DUDVDTN (83)

where

DU =

 cos θU2 eiφU/2 −i sin θU
2 eiφU/2 0

−i sin θU
2 e−iφU/2 cos θU2 e−iφU /2 0

0 0 1

 (84)

DV =

 cos θV2 eiφV /2 0 −i sin θV
2 eiφV /2

0 1 0

−i sin θV
2 e−iφV /2 0 cos θV2 e−iφV /2

 (85)

DT =

1 0 0
0 cos θT2 eiφT /2 −i sin θT

2 eiφT /2

0 −i sin θT
2 e−iφT /2 cos θT2 e−iφT /2

 (86)

N =
eiψU/2 0 0

0 ei(ψT−ψU )/2 0
0 0 e−iψT /2

 . (87)

One can prove that matrix elements D�
[m]T ,[m1 ]T1

(g) satisfy the following normalization
condition,∫
SU(3)

dgD�
[m]T ,[m1 ]T1

(g)
(
D�′

[m′]T ′,[m′
1]T ′

1
(g)

)∗
= VG

dim�
δ��′δ[m][m′]δ[m1][m′

1]δT T ′δT1T
′

1

where dg is an invariant measure on the SU(3) group

dg = sin θU cos2 θV

2
sin θV sin θT dθU dθV dθT dφU dφV dφT dψU dψT

such that ∫
SU(3)

dg = VG
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with VG = (1/2)(4π)5 being the group volume. Also, the matrix elements D�
[m]T ,[m1 ]T1

(g)

satisfy the standard addition formula∑
[m1],T1

D�
[m]T ,[m1 ]T1

(g1)D
�
[m1]T1,[m2]T2

(g2) = D�
[m]T ,[m2 ]T2

(g1g2).

In particular ∑
[m1],T1

D�
[m]T ,[m1 ]T1

(g)
(
D�

[m2]T2,[m1]T1
(g)

)∗ = δ[m][m2]δT T2 .
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